Senescência das células-tronco mesenquimais para proposta terapêutica

Senescência das células-tronco mesenquimais para proposta terapêutica

Autores

DOI:

https://doi.org/10.29327/2335218.1.2-9

Palavras-chave:

Células-tronco mesenquimais, tecido adiposo, senescência celular, terapêutica celular

Resumo

As CTM ganharam atenção significativa no campo da pesquisa por serem promissoras na terapêutica de diversas patologias, tanto na clínica humana quanto veterinária. Este cenário deve-se, principalmente, à plasticidade funcional dessas células como agente regenerativo e moduladoras do sistema imune, o que as tornam excelentes candidatas para a resolução da inflamação. A senescência celular caracteriza o envelhecimento da célula com diminuição de sua proliferação e atividades biológicas. A expansão in vitro das CTM pode acelerar esse processo e diminuir a sua capacidade de multiplicação e potencial de diferenciação em outros tipos celulares, tornando-as inviáveis para as propostas terapêuticas. Neste contexto, este artigo traz uma revisão narrativa sobre a importância da avaliação da senescência das CTM e sua influência nos diversos processos biológicos.

Referências

ALBERTS, B.; BRAY, D.; LEWIS, J.; RAFF, M.; ROBERTS, K.; WATSON, J. D. Biologia molecular da célula. 6 ed. Porto Alegre: ARTMED, 2017.

BAJEK, Anna et al. Does aging of mesenchymal stem cells limit their potential application in clinical practice? Aging Clinical and Experimental Research, v. 24, n. 5, p. 404-411, 2012.

BO YUN, Lee et al. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Journal compilation, v. 5, p. 187-195, 2006.

CHILDS, Bennett G. et al. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature medicine, v. 21, n. 12, p. 1424-1435, 2015.

DE MERA-RODRÍGUEZ, José Antonio et al. Is senescence-associated β-galactosidase a reliable in vivo marker of cellular senescence during embryonic development? Frontiers in cell and developmental biology, v. 9, p. 623175, 2021.

DI MICCO, Raffaella et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology, v. 22, n. 2, p. 75-95, 2021.

DUGGAL, Shivali; BRINCHMANN, Jan E. Importance of serum source for the in vitro replicative senescence of human bone marrow derived mesenchymal stem cells. Journal of cellular physiology, v. 226, n. 11, p. 2908-2915, 2011.

GOH, Kim Jee et al. Human pluripotent stem cell-based models suggest preadipocyte senescence as a possible cause of metabolic complications of Werner and Bloom Syndromes. Scientific reports, v. 10, n. 1, p. 1-12, 2020.

GORGOULIS, Vassilis et al. Cellular senescence: defining a path forward. Cell, v. 179, n. 4, p. 813-827, 2019.

CHILDS, Bennett G. et al. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature medicine, v. 21, n. 12, p. 1424-1435, 2015.

DE MERA-RODRÍGUEZ, José Antonio et al. Is senescence-associated β-galactosidase a reliable in vivo marker of cellular senescence during embryonic development? Frontiers in cell and developmental biology, v. 9, p. 623175, 2021.

DI MICCO, Raffaella et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology, v. 22, n. 2, p. 75-95, 2021.

DUGGAL, Shivali; BRINCHMANN, Jan E. Importance of serum source for the in vitro replicative senescence of human bone marrow derived mesenchymal stem cells. Journal of cellular physiology, v. 226, n. 11, p. 2908-2915, 2011.

GOH, Kim Jee et al. Human pluripotent stem cell-based models suggest preadipocyte senescence as a possible cause of metabolic complications of Werner and Bloom Syndromes. Scientific reports, v. 10, n. 1, p. 1-12, 2020.

GORGOULIS, Vassilis et al. Cellular senescence: defining a path forward. Cell, v. 179, n. 4, p. 813-827, 2019.

CHILDS, Bennett G. et al. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature medicine, v. 21, n. 12, p. 1424-1435, 2015.

DE MERA-RODRÍGUEZ, José Antonio et al. Is senescence-associated β-galactosidase a reliable in vivo marker of cellular senescence during embryonic development? Frontiers in cell and developmental biology, v. 9, p. 623175, 2021.

DI MICCO, Raffaella et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology, v. 22, n. 2, p. 75-95, 2021.

DUGGAL, Shivali; BRINCHMANN, Jan E. Importance of serum source for the in vitro replicative senescence of human bone marrow derived mesenchymal stem cells. Journal of cellular physiology, v. 226, n. 11, p. 2908-2915, 2011.

GOH, Kim Jee et al. Human pluripotent stem cell-based models suggest preadipocyte senescence as a possible cause of metabolic complications of Werner and Bloom Syndromes. Scientific reports, v. 10, n. 1, p. 1-12, 2020.

GORGOULIS, Vassilis et al. Cellular senescence: defining a path forward. Cell, v. 179, n. 4, p. 813-827, 2019.

GUADIX, Juan A.; ZUGAZA, José L.; GÁLVEZ-MARTÍN, Patricia. Characteristics, applications and prospects of mesenchymal stem cells in cell therapy. Medicina Clínica (English Edition), v. 148, n. 9, p. 408-414, 2017.

HAYFLICK, Leonard. The limited in vitro lifetime of human diploid cell strains. Experimental cell research, v. 37, n. 3, p. 614-636, 1965.

KAMAL, Nor Shaheera Mohamad et al. Aging of the cells: Insight into cellular senescence and detection Methods. European journal of cell biology, v. 99, n. 6, p. 151108, 2020.

KITA, Arisa et al. Altered regulation of mesenchymal cell senescence in adipose tissue promotes pathological changes associated with diabetic wound healing. Communications Biology, v. 5, n. 1, p. 1-16, 2022.

LE BLANC, K. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, v. 363, n. 9419, p. 1439–1441, 1 maio 2004.

LEE, J. W. et al. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proceedings of the National Academy of Sciences of the United States of America, v. 106, n. 38, p. 16357–16362, 22 set. 2009

LI, Yi et al. Senescence of mesenchymal stem cells (Review). Int J Mol Med, 2017.

LIU, Jing et al. Senescence in mesenchymal stem cells: functional alterations, molecular mechanisms, and rejuvenation strategies. Frontiers in Cell and Developmental Biology, v. 8, p. 258, 2020.

MUÑOZ-ESPÍN, Daniel; SERRANO, Manuel. Cellular senescence: from physiology to pathology. Nature reviews molecular cell biology, v. 15, n. 7, p. 482-496, 2014.

OU, Min-Yi et al. Adipose tissue aging: mechanisms and therapeutic implications. Cell death & disease, v. 13, n. 4, p. 1-10, 2022.

PATEL, Devang M.; SHAH, Jainy; SRIVASTAVA, Anand S. Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem cells international, v. 2013, 2013.

PETRIE ARONIN, Caren E.; TUAN, Rocky S. Therapeutic potential of the immunomodulatory activities of adult mesenchymal stem cells. Birth Defects Research Part C: Embryo Today: Reviews, v. 90, n. 1, p. 67-74, 2010.

SEVERINO, Joseph et al. Is β-galactosidase staining a marker of senescence in vitro and in vivo? Experimental cell research, v. 257, n. 1, p. 162-171, 2000.

SHARMA, Ratti Ram et al. Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion, v. 54, n. 5, p. 1418-1437, 2014.

SMITH, Ulf et al. Cellular senescence and its role in white adipose tissue. International Journal of Obesity, v. 45, n. 5, p. 934-943, 2021.

SOTIROPOULOU, Panagiota A. et al. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem cells, v. 24, n. 2, p. 462-471, 2006.

TOGEL F; HU Z, WEISS K; ISAAC J; LANGE C, WESTENFELDER C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 2005;289(1):F31-42.

TURINETTO, Valentina; VITALE, Emanuela; GIACHINO, Claudia. Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. International journal of molecular sciences, v. 17, n. 7, p. 1164, 2016.

UCCELLI, A.; MORETTA, L.; PISTOIA, V. Mesenchymal stem cells in health and disease. Nature Reviews Immunology Nat Rev Immunol, set. 2008. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/19172693/>. Acesso em: 4 mar 2021.

WAGNER, Wolfgang et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PloS one, v. 3, n. 5, p. e2213, 2008.

WILEY, Christopher D.; CAMPISI, Judith. The metabolic roots of senescence: Mechanisms and opportunities for intervention. Nature Metabolism, v. 3, n. 10, p. 1290-1301, 2021.

YARAK, Samira; OKAMOTO, Oswaldo Keith. Células-tronco derivadas de tecido adiposo humano: desafios atuais e perspectivas clínicas. Anais Brasileiros de Dermatologia, v. 85, n. 5, p. 647-656, 2010.

ZUTTION, Marilia Sanches Santos Rizzo et al. Adipose tissue-derived stem cells and the importance of animal model standardization for pre-clinical trials. Revista Brasileira de Cardiologia Invasiva, v. 21, p. 281-287, 2013.

Downloads

Publicado

2023-06-01

Como Citar

1.
Lucindo Serafim A, Santos Oliveira Silva K, Bozzi A. Senescência das células-tronco mesenquimais para proposta terapêutica. REBESBE [Internet]. 1º de junho de 2023 [citado 19º de setembro de 2024];1(2). Disponível em: https://rebesbe.emnuvens.com.br/revista/article/view/24
Loading...